75,638 notes




Does money make you mean? In a talk at TEDxMarin, social psychologist Paul Piff shares his research into how people behave when they feel wealthy. (Hint: badly.)

To learn more, watch the whole talk here»

I have a theory about this, which is completely unsupported by data and might be totally wrong.

I think people like to believe that their choices matter. We don’t like to consider the role that luck and circumstance plays in human life, because it makes us feel powerless and ultimately like maybe we should not even bother to get out of bed in the morning. So we find ways to imagine that we can make our own destinies and that we are in control of our own lives.

To an extent, of course, we are. Our choices do matter. But so do chance and privilege.

But I think most people want a narrative of their lives that is about something other than dumb luck. So if you become powerful or wealthy, you start to think, "This happened because I worked hard," because you did work hard. You think, "This happened because I didn’t give up," because you didn’t give up.

But THEN there is this nagging feeling that haunts you, because you know that other people also work hard and that other people also don’t give up, and that they have not experienced the same success you have.

In short, deep down you know that the game of Monopoly, through chance or through systemic injustice, has been rigged in your favor. And that makes you feel like everything is random and meaningless and you are unworthy of your good fortune, and I think many people respond to that feeling defensively: They want you to know that they made a really amazing decision to buy Park Avenue, a bold and dangerous decision. And yes, they started the game with more money, but lots of people start the game with more money and DON’T make the bold and brilliant decision to buy Park Avenue.

And in the end, this desire to build a narrative of your success that gives you agency within your own life leads to a less compassionate life. It also often I think leads to echo chambers: Because any challenge to your “I earned it” worldview is a direct attack on your feeling that you are in control of your life, you have to surround yourself with people whose own life experiences do not contradict that worldview. This is the only reason I can think of that wealthy people are literally more likely to take candy from children.

The challenge—and this is a challenge for all of us—is to internalize the roles luck and systemic injustice play in our lives while still continuing to try to be good and useful creatures. 

Glad to see that John is spending his vacation ruminating on human nature and inequality. All is right with the world.

2,244 notes

rodzilla-world asked: I have asked this question in other places, but still have a few unexplained issues. About all this talk of terraforming Mars: I was under the impression that Mars lost whatever atmosphere it may have once had because of the planet's smaller size, meaning not enough gravity to "hold onto" it. The other theory I read about involved Mars' magnetic field. So how would it be possible to recreate livable conditions, now?



Hi there!

Mars actually does have an atmosphere. It’s very very very very tenuous, but there’s something there (Think about it this way, the surface of the Earth has the pressure of ~101 kilopascals (that’s 101,000 pascals), whereas Mars has ~600 pascals. Big difference, but I would still call it an atmosphere. The planet is 1/4 the size of Earth, but it should still have enough gravity to “hold on” to some of the heavier gases (carbon dioxide, methane, etc). If you’re talking about H, or He, then yeah, that might not be enough gravity to hold on it. But that goes the same for Earth. H and He are light in general.

Okay, so I’ve already answered the question way back about the ways which we can terraform Mars. Here’s the answer below, and this is the link to it

Here’s the issue with terraforming Mars:

  • Temperature: Martian nights average to approximately 186K (-87 ˚C), and an average Martian day is approximately 268K (-5˚C), both of which is below the freezing point of water, and thus all water on Mars exists in solid form. It would be difficult to find anything to drink—need energy to melt the ice. Also, there would be no lakes/rivers/oceans to drive the water cycle. No water for plants and animals. Worst of all, no coffee!!
  • Atmosphere: Mars has a very tenuous atmosphere. It would be difficult to breathe because of the difference in pressure (again, we are used to approx. 1atm. Mars has about 6 x 10-3 atm).  Also, it’s mainly composed of CO2, although too thin to provide a substantial greenhouse effect, it’s still at a high enough percentage for carbon dioxide poisoning for humans. 
  • Weather: Tidal heating can lead to a dynamic cycle of CO2 sublimation/condensation. This can lead to high wind speeds, which would not be good for structural engineering, or aerospace engineering. Also, prevalent dust storms can lead to issues with…dust getting everywhere…visibility…etc. Dust storms can also change the albedo, though that might not affect human habitability as it would have by directly affecting the surface inhabitants. 
  • Nitrogen: There’s missing nitrogen in the Martian atmosphere. The nitrogen gas is an important component of the Earth atmosphere. While this might not be a huge deal, the nitrogen cycle itself is crucial to Earth life forms. Plants and bacteria are in an extremely intimate relationship via nitrogen cycling (ammonia to nitrates back to ammonia, etc). This would make it difficult for plant life to exist on Mars. If there’s nitrogen fixing bacteria around, theoretically, it can recycle the nitrates that we *think* is locked up in Martian regolith, and provide nutrients to plant/animals. Nitrogen is a crucial element for life (DNA, protein, etc). 
  • Radiation: Because of its tenuous atmosphere, and negligible (or non-existent?) magnetic field, Mars does not have a steady protection from the Sun’s radiation. So the surface is constantly bombarded with UV, cosmic rays, crazy electromagnetic waves etc. Humans wouldn’t be able to withstand this high amount of a radiation—we don’t have the biological capacity to reverse such damage (some bacteria might). 
  • Geology: Mars has a super thick lithosphere, no tectonic plates, and has many inactive (big) volcanoes. This inactive geology would make habitability difficult because there would be no movements of plates, thus no water, thus no ocean (it’s too cold anyway), thus no water cycle. Also because it’s so small, Mars may have already lost most/all of its heat. Regardless of how much energy we can pump into the system to make it warm/habitable, it’s going to become a frozen world one day, completely unable to warm up enough using solely internal heat. But this would take a very very long time, so it might not be a huge issue with temporary terraformation. 

Here is how to solve it:

  • Temperature & Atmosphere: If we pump up the heat a *little* bit (no, actually, a lot—but a little bit on a thermodynamic scale), we might be able to unlock the subsurface water that is buried underneath Martian regolith as ice. Something like this can be solved by increasing the amount of greenhouse gas in the atmosphere, to drive up the effective temperature. Pumping CO2 would require possibly jump starting a volcano (how on Earth can that even be done??—not a pun). A more plausible idea is to build power plants all over the planet (as have suggested by Chris McKay from NASA). Or simply by seeding the planet with respiring life that uses inorganic molecules to utilize energy and produce CO2. Early microbial life forms do this (before the evolution of cyanobacteria/photosynthesis). Those microbes were methanogens, sulfur-loving, and can probably also metabolize nitrates. 
  • Weather: Dust storms can be mitigated by living in closed quarters. 
  • Radiation: The problem with UV radiation (and lack of magnetic field) can probably be solved by producing artificial magnetic field. This kind of engineering can only applied to small area, not globally. Again, it’s almost impossible to jump start the solid core again, therefore such an issue can only be tackled on a small scale. 
  • Geology: Mars would have a similar problem as Venus. While there might be enough water on the surface, there’s no convection in the mantle to drive tectonic plates. So while its geology might be change momentarily (lasting maybe about a billion years), it would be difficult to keep it stable as the planet loses more and more heat.  
  • Ethics!!: If there is no Martian life, yes, we should terraform it (although we could never be sure—ack, science!). If there is Martian life, we must do everything we can to preserve it—not necessarily protect it, but at the very least observe/study it without directly affecting it like we have done so for many other endangered species on Earth. 

This is copied verbatim from one of my homeworks from my astronomy class last semester, The Science and Fiction of Planetary Systems

The actual problem with terrafoming Mars is MONEY. Who will pay for what, and which nation should get what piece of land— It’s all politics that I’m not willing to discuss. 

But we will get there. I absolutely believe it. We will get there. 

Everything you’ve ever wanted to know about making Total Recall a reality!

376,276 notes



And it upsets me that as I record this video #wewillalwayssupportyoujustin is trending on twitter. I wish all the people who were tweeting that right now would be forced to send a tweet to explain to Katie’s family in 140 characters or less why they would quote always support someone who would do something as fundamentally selfish as driving drunk.

- Josh Sundquist